Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem

نویسندگان

  • Cristián E. Cortés
  • Doris Sáez
  • Alfredo Núñez
  • Diego Muñoz-Carpintero
چکیده

T paper presents a hybrid adaptive predictive control approach that includes future information in realtime routing decisions in the context of a dynamic pickup and delivery problem (DPDP). We recognize in this research that when the problem is dynamic, an additional stochastic effect has to be considered within the analytical expression of the objective function for vehicle scheduling and routing, which is the extra cost associated with potential rerouting arising from unknown requests in the future. The major contributions of this paper are: first, the development of a formal adaptive predictive control framework to model the DPDP, and second, the development and coding of an ad hoc particle swarm optimization (PSO) algorithm to efficiently solve it. Predictive state-space formulations are written on the relevant variables (vehicle load and departure time at stops) for the DPDP. Next, an objective function is stated to solve the real-time system when predicting one and two steps ahead in time. A problem-specific PSO algorithm is proposed and coded according to the dynamic formulation. Then, the PSO method is used to validate this approach through a simulated numerical example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm for a Two-Echelon Location- Routing Problem with Simultaneous Pickup and Delivery under Fuzzy Demand

Location-Routing Problem (LRP) emerges as one of the hybrid optimization problems in distribution networks in which, total cost of the system would be reduced significantly by simultaneous optimization of locating a set of facilities among candidate locations and routing vehicles. In this paper, a mixed integer linear programming model is presented for a two-echelon location-routing problem wit...

متن کامل

Hybrid Predictive Control for the Vehicle Dynamic Routing Problem based on Evolutionary Multiobjective Optimization (EMO)

In this paper, a hybrid adaptive predictive control approach (HAPC) to solve a dynamic pickup and delivery problem (DPDP) is presented based on a dynamic objective function that includes two dimensions: user and operator costs. Because these two costs are opposite components, the problem was formulated and solved by using an Evolutionary Multiobjective Optimization (EMO) technique. The idea is ...

متن کامل

The fuzzy multi-depot vehicle routing problem with simultaneous pickup and delivery: Formulation and a heuristic algorithm

In this paper, the fuzzy multi-depot vehicle routing problem with simultaneous pickup and delivery (FMDVRP-SPD) is investigated. The FMDVRP-SPD is the problem of allocating customers to several depots, so that the optimal set of routes is determined simultaneously to serve the pickup and the delivery demands of each customer within scattered depots. In the problem, both pickup and delivery dema...

متن کامل

Multiobjective model predictive control for dynamic pickup and delivery problems

A multiobjective-model-based predictive control approach is proposed to solve a dynamic pickup and delivery problem in the context of a potential dial-a-ride service implementation. A dynamic objective function including two relevant dimensions, user and operator costs, is considered. Because these two components typically have opposing goals, the problem is formulated and solved using multiobj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Transportation Science

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009